"""
Container for the result of running the sample (MCMC) method
"""

import math
import os
from io import StringIO
from typing import (
    Any,
    Dict,
    Hashable,
    List,
    MutableMapping,
    Optional,
    Sequence,
    Tuple,
    Union,
)

import numpy as np
import pandas as pd

try:
    import xarray as xr

    XARRAY_INSTALLED = True
except ImportError:
    XARRAY_INSTALLED = False

from cmdstanpy import _CMDSTAN_SAMPLING, _CMDSTAN_THIN, _CMDSTAN_WARMUP, _TMPDIR
from cmdstanpy.cmdstan_args import Method, SamplerArgs
from cmdstanpy.utils import (
    EXTENSION,
    build_xarray_data,
    check_sampler_csv,
    cmdstan_path,
    cmdstan_version_before,
    create_named_text_file,
    do_command,
    flatten_chains,
    get_logger,
)

from .metadata import InferenceMetadata
from .runset import RunSet


class CmdStanMCMC:
    """
    Container for outputs from CmdStan sampler run.
    Provides methods to summarize and diagnose the model fit
    and accessor methods to access the entire sample or
    individual items. Created by :meth:`CmdStanModel.sample`

    The sample is lazily instantiated on first access of either
    the resulting sample or the HMC tuning parameters, i.e., the
    step size and metric.
    """

    # pylint: disable=too-many-public-methods
    def __init__(
        self,
        runset: RunSet,
    ) -> None:
        """Initialize object."""
        if not runset.method == Method.SAMPLE:
            raise ValueError(
                'Wrong runset method, expecting sample runset, '
                'found method {}'.format(runset.method)
            )
        self.runset = runset

        # info from runset to be exposed
        sampler_args = self.runset._args.method_args
        assert isinstance(
            sampler_args, SamplerArgs
        )  # make the typechecker happy
        self._iter_sampling: int = _CMDSTAN_SAMPLING
        if sampler_args.iter_sampling is not None:
            self._iter_sampling = sampler_args.iter_sampling
        self._iter_warmup: int = _CMDSTAN_WARMUP
        if sampler_args.iter_warmup is not None:
            self._iter_warmup = sampler_args.iter_warmup
        self._thin: int = _CMDSTAN_THIN
        if sampler_args.thin is not None:
            self._thin = sampler_args.thin
        self._is_fixed_param = sampler_args.fixed_param
        self._save_warmup: bool = sampler_args.save_warmup
        self._sig_figs = runset._args.sig_figs

        # info from CSV values, instantiated lazily
        self._draws: np.ndarray = np.array(())
        # only valid when not is_fixed_param
        self._metric: np.ndarray = np.array(())
        self._step_size: np.ndarray = np.array(())
        self._divergences: np.ndarray = np.zeros(self.runset.chains, dtype=int)
        self._max_treedepths: np.ndarray = np.zeros(
            self.runset.chains, dtype=int
        )

        # info from CSV initial comments and header
        config = self._validate_csv_files()
        self._metadata: InferenceMetadata = InferenceMetadata(config)
        if not self._is_fixed_param:
            self._check_sampler_diagnostics()

    def __repr__(self) -> str:
        repr = 'CmdStanMCMC: model={} chains={}{}'.format(
            self.runset.model,
            self.runset.chains,
            self.runset._args.method_args.compose(0, cmd=[]),
        )
        repr = '{}\n csv_files:\n\t{}\n output_files:\n\t{}'.format(
            repr,
            '\n\t'.join(self.runset.csv_files),
            '\n\t'.join(self.runset.stdout_files),
        )
        # TODO - hamiltonian, profiling files
        return repr

    def __getattr__(self, attr: str) -> np.ndarray:
        """Synonymous with ``fit.stan_variable(attr)"""
        if attr.startswith("_"):
            raise AttributeError(f"Unknown variable name {attr}")
        try:
            return self.stan_variable(attr)
        except ValueError as e:
            # pylint: disable=raise-missing-from
            raise AttributeError(*e.args)

    def __getstate__(self) -> dict:
        # This function returns the mapping of objects to serialize with pickle.
        # See https://docs.python.org/3/library/pickle.html#object.__getstate__
        # for details. We call _assemble_draws to ensure posterior samples have
        # been loaded prior to serialization.
        self._assemble_draws()
        return self.__dict__

    @property
    def chains(self) -> int:
        """Number of chains."""
        return self.runset.chains

    @property
    def chain_ids(self) -> List[int]:
        """Chain ids."""
        return self.runset.chain_ids

    @property
    def num_draws_warmup(self) -> int:
        """Number of warmup draws per chain, i.e., thinned warmup iterations."""
        return int(math.ceil((self._iter_warmup) / self._thin))

    @property
    def num_draws_sampling(self) -> int:
        """
        Number of sampling (post-warmup) draws per chain, i.e.,
        thinned sampling iterations.
        """
        return int(math.ceil((self._iter_sampling) / self._thin))

    @property
    def metadata(self) -> InferenceMetadata:
        """
        Returns object which contains CmdStan configuration as well as
        information about the names and structure of the inference method
        and model output variables.
        """
        return self._metadata

    @property
    def column_names(self) -> Tuple[str, ...]:
        """
        Names of all outputs from the sampler, comprising sampler parameters
        and all components of all model parameters, transformed parameters,
        and quantities of interest. Corresponds to Stan CSV file header row,
        with names munged to array notation, e.g. `beta[1]` not `beta.1`.
        """
        return self._metadata.cmdstan_config['column_names']  # type: ignore

    @property
    def metric_type(self) -> Optional[str]:
        """
        Metric type used for adaptation, either 'diag_e' or 'dense_e', according
        to CmdStan arg 'metric'.
        When sampler algorithm 'fixed_param' is specified, metric_type is None.
        """
        return (
            self._metadata.cmdstan_config['metric']
            if not self._is_fixed_param
            else None
        )

    @property
    def metric(self) -> Optional[np.ndarray]:
        """
        Metric used by sampler for each chain.
        When sampler algorithm 'fixed_param' is specified, metric is None.
        """
        if self._is_fixed_param:
            return None
        if self._metadata.cmdstan_config['metric'] == 'unit_e':
            get_logger().info(
                'Unit diagnonal metric, inverse mass matrix size unknown.'
            )
            return None
        self._assemble_draws()
        return self._metric

    @property
    def step_size(self) -> Optional[np.ndarray]:
        """
        Step size used by sampler for each chain.
        When sampler algorithm 'fixed_param' is specified, step size is None.
        """
        self._assemble_draws()
        return self._step_size if not self._is_fixed_param else None

    @property
    def thin(self) -> int:
        """
        Period between recorded iterations.  (Default is 1).
        """
        return self._thin

    @property
    def divergences(self) -> Optional[np.ndarray]:
        """
        Per-chain total number of post-warmup divergent iterations.
        When sampler algorithm 'fixed_param' is specified, returns None.
        """
        return self._divergences if not self._is_fixed_param else None

    @property
    def max_treedepths(self) -> Optional[np.ndarray]:
        """
        Per-chain total number of post-warmup iterations where the NUTS sampler
        reached the maximum allowed treedepth.
        When sampler algorithm 'fixed_param' is specified, returns None.
        """
        return self._max_treedepths if not self._is_fixed_param else None

    def draws(
        self, *, inc_warmup: bool = False, concat_chains: bool = False
    ) -> np.ndarray:
        """
        Returns a numpy.ndarray over all draws from all chains which is
        stored column major so that the values for a parameter are contiguous
        in memory, likewise all draws from a chain are contiguous.
        By default, returns a 3D array arranged (draws, chains, columns);
        parameter ``concat_chains=True`` will return a 2D array where all
        chains are flattened into a single column, preserving chain order,
        so that given M chains of N draws, the first N draws are from chain 1,
        up through the last N draws from chain M.

        :param inc_warmup: When ``True`` and the warmup draws are present in
            the output, i.e., the sampler was run with ``save_warmup=True``,
            then the warmup draws are included.  Default value is ``False``.

        :param concat_chains: When ``True`` return a 2D array flattening all
            all draws from all chains.  Default value is ``False``.

        See Also
        --------
        CmdStanMCMC.draws_pd
        CmdStanMCMC.draws_xr
        CmdStanGQ.draws
        """
        self._assemble_draws()

        if inc_warmup and not self._save_warmup:
            get_logger().warning(
                "Sample doesn't contain draws from warmup iterations,"
                ' rerun sampler with "save_warmup=True".'
            )

        start_idx = 0
        if not inc_warmup and self._save_warmup:
            start_idx = self.num_draws_warmup

        if concat_chains:
            return flatten_chains(self._draws[start_idx:, :, :])
        return self._draws[start_idx:, :, :]

    def _validate_csv_files(self) -> Dict[str, Any]:
        """
        Checks that Stan CSV output files for all chains are consistent
        and returns dict containing config and column names.

        Tabulates sampling iters which are divergent or at max treedepth
        Raises exception when inconsistencies detected.
        """
        dzero = {}
        for i in range(self.chains):
            if i == 0:
                dzero = check_sampler_csv(
                    path=self.runset.csv_files[i],
                    is_fixed_param=self._is_fixed_param,
                    iter_sampling=self._iter_sampling,
                    iter_warmup=self._iter_warmup,
                    save_warmup=self._save_warmup,
                    thin=self._thin,
                )
                if not self._is_fixed_param:
                    self._divergences[i] = dzero['ct_divergences']
                    self._max_treedepths[i] = dzero['ct_max_treedepth']
            else:
                drest = check_sampler_csv(
                    path=self.runset.csv_files[i],
                    is_fixed_param=self._is_fixed_param,
                    iter_sampling=self._iter_sampling,
                    iter_warmup=self._iter_warmup,
                    save_warmup=self._save_warmup,
                    thin=self._thin,
                )
                for key in dzero:
                    # check args that matter for parsing, plus name, version
                    if (
                        key
                        in [
                            'stan_version_major',
                            'stan_version_minor',
                            'stan_version_patch',
                            'stanc_version',
                            'model',
                            'num_samples',
                            'num_warmup',
                            'save_warmup',
                            'thin',
                            'refresh',
                        ]
                        and dzero[key] != drest[key]
                    ):
                        raise ValueError(
                            'CmdStan config mismatch in Stan CSV file {}: '
                            'arg {} is {}, expected {}'.format(
                                self.runset.csv_files[i],
                                key,
                                dzero[key],
                                drest[key],
                            )
                        )
                if not self._is_fixed_param:
                    self._divergences[i] = drest['ct_divergences']
                    self._max_treedepths[i] = drest['ct_max_treedepth']
        return dzero

    def _check_sampler_diagnostics(self) -> None:
        """
        Warn if any iterations ended in divergences or hit maxtreedepth.
        """
        if np.any(self._divergences) or np.any(self._max_treedepths):
            diagnostics = ['Some chains may have failed to converge.']
            ct_iters = self._metadata.cmdstan_config['num_samples']
            for i in range(self.runset._chains):
                if self._divergences[i] > 0:
                    diagnostics.append(
                        f'Chain {i + 1} had {self._divergences[i]} '
                        'divergent transitions '
                        f'({((self._divergences[i]/ct_iters)*100):.1f}%)'
                    )
                if self._max_treedepths[i] > 0:
                    diagnostics.append(
                        f'Chain {i + 1} had {self._max_treedepths[i]} '
                        'iterations at max treedepth '
                        f'({((self._max_treedepths[i]/ct_iters)*100):.1f}%)'
                    )
            diagnostics.append(
                'Use the "diagnose()" method on the CmdStanMCMC object'
                ' to see further information.'
            )
            get_logger().warning('\n\t'.join(diagnostics))

    def _assemble_draws(self) -> None:
        """
        Allocates and populates the step size, metric, and sample arrays
        by parsing the validated stan_csv files.
        """
        if self._draws.shape != (0,):
            return
        num_draws = self.num_draws_sampling
        sampling_iter_start = 0
        if self._save_warmup:
            num_draws += self.num_draws_warmup
            sampling_iter_start = self.num_draws_warmup
        self._draws = np.empty(
            (num_draws, self.chains, len(self.column_names)),
            dtype=float,
            order='F',
        )
        self._step_size = np.empty(self.chains, dtype=float)
        for chain in range(self.chains):
            with open(self.runset.csv_files[chain], 'r') as fd:
                line = fd.readline().strip()
                # read initial comments, CSV header row
                while len(line) > 0 and line.startswith('#'):
                    line = fd.readline().strip()
                if not self._is_fixed_param:
                    # handle warmup draws, if any
                    if self._save_warmup:
                        for i in range(self.num_draws_warmup):
                            line = fd.readline().strip()
                            xs = line.split(',')
                            self._draws[i, chain, :] = [float(x) for x in xs]
                    line = fd.readline().strip()
                    if line != '# Adaptation terminated':  # shouldn't happen?
                        while line != '# Adaptation terminated':
                            line = fd.readline().strip()
                    # step_size, metric (diag_e and dense_e only)
                    line = fd.readline().strip()
                    _, step_size = line.split('=')
                    self._step_size[chain] = float(step_size.strip())
                    if self._metadata.cmdstan_config['metric'] != 'unit_e':
                        line = fd.readline().strip()  # metric type
                        line = fd.readline().lstrip(' #\t').rstrip()
                        num_unconstrained_params = len(line.split(','))
                        if chain == 0:  # can't allocate w/o num params
                            if self.metric_type == 'diag_e':
                                self._metric = np.empty(
                                    (self.chains, num_unconstrained_params),
                                    dtype=float,
                                )
                            else:
                                self._metric = np.empty(
                                    (
                                        self.chains,
                                        num_unconstrained_params,
                                        num_unconstrained_params,
                                    ),
                                    dtype=float,
                                )
                        if line:
                            if self.metric_type == 'diag_e':
                                xs = line.split(',')
                                self._metric[chain, :] = [float(x) for x in xs]
                            else:
                                xs = line.strip().split(',')
                                self._metric[chain, 0, :] = [
                                    float(x) for x in xs
                                ]
                                for i in range(1, num_unconstrained_params):
                                    line = fd.readline().lstrip(' #\t').rstrip()
                                    xs = line.split(',')
                                    self._metric[chain, i, :] = [
                                        float(x) for x in xs
                                    ]
                    else:  # unit_e changed in 2.34 to have an extra line
                        pos = fd.tell()
                        line = fd.readline().strip()
                        if not line.startswith('#'):
                            fd.seek(pos)

                # process draws
                for i in range(sampling_iter_start, num_draws):
                    line = fd.readline().strip()
                    xs = line.split(',')
                    self._draws[i, chain, :] = [float(x) for x in xs]
        assert self._draws is not None

    def summary(
        self,
        percentiles: Sequence[int] = (5, 50, 95),
        sig_figs: int = 6,
    ) -> pd.DataFrame:
        """
        Run cmdstan/bin/stansummary over all output CSV files, assemble
        summary into DataFrame object.  The first row contains statistics
        for the total joint log probability `lp__`, but is omitted when the
        Stan model has no parameters.  The remaining rows contain summary
        statistics for all parameters, transformed parameters, and generated
        quantities variables, in program declaration order.

        :param percentiles: Ordered non-empty sequence of percentiles to report.
            Must be integers from (1, 99), inclusive. Defaults to
            ``(5, 50, 95)``

        :param sig_figs: Number of significant figures to report.
            Must be an integer between 1 and 18.  If unspecified, the default
            precision for the system file I/O is used; the usual value is 6.
            If precision above 6 is requested, sample must have been produced
            by CmdStan version 2.25 or later and sampler output precision
            must equal to or greater than the requested summary precision.

        :return: pandas.DataFrame
        """
        if len(percentiles) == 0:
            raise ValueError(
                'Invalid percentiles argument, must be ordered'
                ' non-empty list from (1, 99), inclusive.'
            )
        cur_pct = 0
        for pct in percentiles:
            if pct > 99 or not pct > cur_pct:
                raise ValueError(
                    'Invalid percentiles spec, must be ordered'
                    ' non-empty list from (1, 99), inclusive.'
                )
            cur_pct = pct
        percentiles_str = (
            f"--percentiles= {','.join(str(x) for x in percentiles)}"
        )

        if not isinstance(sig_figs, int) or sig_figs < 1 or sig_figs > 18:
            raise ValueError(
                'Keyword "sig_figs" must be an integer between 1 and 18,'
                ' found {}'.format(sig_figs)
            )
        csv_sig_figs = self._sig_figs or 6
        if sig_figs > csv_sig_figs:
            get_logger().warning(
                'Requesting %d significant digits of output, but CSV files'
                ' only have %d digits of precision.',
                sig_figs,
                csv_sig_figs,
            )
        sig_figs_str = f'--sig_figs={sig_figs}'
        cmd_path = os.path.join(
            cmdstan_path(), 'bin', 'stansummary' + EXTENSION
        )
        tmp_csv_file = 'stansummary-{}-'.format(self.runset._args.model_name)
        tmp_csv_path = create_named_text_file(
            dir=_TMPDIR, prefix=tmp_csv_file, suffix='.csv', name_only=True
        )
        csv_str = '--csv_filename={}'.format(tmp_csv_path)
        # TODO: remove at some future release
        if cmdstan_version_before(2, 24):
            csv_str = '--csv_file={}'.format(tmp_csv_path)
        cmd = [
            cmd_path,
            percentiles_str,
            sig_figs_str,
            csv_str,
        ] + self.runset.csv_files
        do_command(cmd, fd_out=None)
        with open(tmp_csv_path, 'rb') as fd:
            summary_data = pd.read_csv(
                fd,
                delimiter=',',
                header=0,
                index_col=0,
                comment='#',
                float_precision='high',
            )
        mask = (
            [not x.endswith('__') for x in summary_data.index]
            if self._is_fixed_param
            else [
                x == 'lp__' or not x.endswith('__') for x in summary_data.index
            ]
        )
        summary_data.index.name = None
        return summary_data[mask]

    def diagnose(self) -> Optional[str]:
        """
        Run cmdstan/bin/diagnose over all output CSV files,
        return console output.

        The diagnose utility reads the outputs of all chains
        and checks for the following potential problems:

        + Transitions that hit the maximum treedepth
        + Divergent transitions
        + Low E-BFMI values (sampler transitions HMC potential energy)
        + Low effective sample sizes
        + High R-hat values
        """
        cmd_path = os.path.join(cmdstan_path(), 'bin', 'diagnose' + EXTENSION)
        cmd = [cmd_path] + self.runset.csv_files
        result = StringIO()
        do_command(cmd=cmd, fd_out=result)
        return result.getvalue()

    def draws_pd(
        self,
        vars: Union[List[str], str, None] = None,
        inc_warmup: bool = False,
    ) -> pd.DataFrame:
        """
        Returns the sample draws as a pandas DataFrame.
        Flattens all chains into single column.  Container variables
        (array, vector, matrix) will span multiple columns, one column
        per element. E.g. variable 'matrix[2,2] foo' spans 4 columns:
        'foo[1,1], ... foo[2,2]'.

        :param vars: optional list of variable names.

        :param inc_warmup: When ``True`` and the warmup draws are present in
            the output, i.e., the sampler was run with ``save_warmup=True``,
            then the warmup draws are included.  Default value is ``False``.

        See Also
        --------
        CmdStanMCMC.draws
        CmdStanMCMC.draws_xr
        CmdStanGQ.draws_pd
        """
        if vars is not None:
            if isinstance(vars, str):
                vars_list = [vars]
            else:
                vars_list = vars

        if inc_warmup and not self._save_warmup:
            get_logger().warning(
                'Draws from warmup iterations not available,'
                ' must run sampler with "save_warmup=True".'
            )

        self._assemble_draws()
        cols = []
        if vars is not None:
            for var in dict.fromkeys(vars_list):
                if var in self._metadata.method_vars:
                    cols.append(var)
                elif var in self._metadata.stan_vars:
                    info = self._metadata.stan_vars[var]
                    cols.extend(
                        self.column_names[info.start_idx : info.end_idx]
                    )
                elif var in ['chain__', 'iter__', 'draw__']:
                    cols.append(var)
                else:
                    raise ValueError(f'Unknown variable: {var}')
        else:
            cols = ['chain__', 'iter__', 'draw__'] + list(self.column_names)

        draws = self.draws(inc_warmup=inc_warmup)
        # add long-form columns for chain, iteration, draw
        n_draws, n_chains, _ = draws.shape
        chains_col = (
            np.repeat(np.arange(1, n_chains + 1), n_draws)
            .reshape(1, n_chains, n_draws)
            .T
        )
        iter_col = (
            np.tile(np.arange(1, n_draws + 1), n_chains)
            .reshape(1, n_chains, n_draws)
            .T
        )
        draw_col = (
            np.arange(1, (n_draws * n_chains) + 1)
            .reshape(1, n_chains, n_draws)
            .T
        )
        draws = np.concatenate([chains_col, iter_col, draw_col, draws], axis=2)

        return pd.DataFrame(
            data=flatten_chains(draws),
            columns=['chain__', 'iter__', 'draw__'] + list(self.column_names),
        )[cols]

    def draws_xr(
        self, vars: Union[str, List[str], None] = None, inc_warmup: bool = False
    ) -> "xr.Dataset":
        """
        Returns the sampler draws as a xarray Dataset.

        :param vars: optional list of variable names.

        :param inc_warmup: When ``True`` and the warmup draws are present in
            the output, i.e., the sampler was run with ``save_warmup=True``,
            then the warmup draws are included.  Default value is ``False``.

        See Also
        --------
        CmdStanMCMC.draws
        CmdStanMCMC.draws_pd
        CmdStanGQ.draws_xr
        """
        if not XARRAY_INSTALLED:
            raise RuntimeError(
                'Package "xarray" is not installed, cannot produce draws array.'
            )
        if inc_warmup and not self._save_warmup:
            get_logger().warning(
                "Draws from warmup iterations not available,"
                ' must run sampler with "save_warmup=True".'
            )
        if vars is None:
            vars_list = list(self._metadata.stan_vars.keys())
        elif isinstance(vars, str):
            vars_list = [vars]
        else:
            vars_list = vars

        self._assemble_draws()

        num_draws = self.num_draws_sampling
        meta = self._metadata.cmdstan_config
        attrs: MutableMapping[Hashable, Any] = {
            "stan_version": f"{meta['stan_version_major']}."
            f"{meta['stan_version_minor']}.{meta['stan_version_patch']}",
            "model": meta["model"],
            "num_draws_sampling": num_draws,
        }
        if inc_warmup and self._save_warmup:
            num_draws += self.num_draws_warmup
            attrs["num_draws_warmup"] = self.num_draws_warmup

        data: MutableMapping[Hashable, Any] = {}
        coordinates: MutableMapping[Hashable, Any] = {
            "chain": self.chain_ids,
            "draw": np.arange(num_draws),
        }

        for var in vars_list:
            build_xarray_data(
                data,
                self._metadata.stan_vars[var],
                self.draws(inc_warmup=inc_warmup),
            )
        return xr.Dataset(data, coords=coordinates, attrs=attrs).transpose(
            'chain', 'draw', ...
        )

    def stan_variable(
        self,
        var: str,
        inc_warmup: bool = False,
    ) -> np.ndarray:
        """
        Return a numpy.ndarray which contains the set of draws
        for the named Stan program variable.  Flattens the chains,
        leaving the draws in chain order.  The first array dimension,
        corresponds to number of draws or post-warmup draws in the sample,
        per argument ``inc_warmup``.  The remaining dimensions correspond to
        the shape of the Stan program variable.

        Underlyingly draws are in chain order, i.e., for a sample with
        N chains of M draws each, the first M array elements are from chain 1,
        the next M are from chain 2, and the last M elements are from chain N.

        * If the variable is a scalar variable, the return array has shape
          ( draws * chains, 1).
        * If the variable is a vector, the return array has shape
          ( draws * chains, len(vector))
        * If the variable is a matrix, the return array has shape
          ( draws * chains, size(dim 1), size(dim 2) )
        * If the variable is an array with N dimensions, the return array
          has shape ( draws * chains, size(dim 1), ..., size(dim N))

        For example, if the Stan program variable ``theta`` is a 3x3 matrix,
        and the sample consists of 4 chains with 1000 post-warmup draws,
        this function will return a numpy.ndarray with shape (4000,3,3).

        This functionaltiy is also available via a shortcut using ``.`` -
        writing ``fit.a`` is a synonym for ``fit.stan_variable("a")``

        :param var: variable name

        :param inc_warmup: When ``True`` and the warmup draws are present in
            the output, i.e., the sampler was run with ``save_warmup=True``,
            then the warmup draws are included.  Default value is ``False``.

        See Also
        --------
        CmdStanMCMC.stan_variables
        CmdStanMLE.stan_variable
        CmdStanPathfinder.stan_variable
        CmdStanVB.stan_variable
        CmdStanGQ.stan_variable
        CmdStanLaplace.stan_variable
        """
        try:
            draws = self.draws(inc_warmup=inc_warmup, concat_chains=True)
            out: np.ndarray = self._metadata.stan_vars[var].extract_reshape(
                draws
            )
            return out
        except KeyError:
            # pylint: disable=raise-missing-from
            raise ValueError(
                f'Unknown variable name: {var}\n'
                'Available variables are '
                + ", ".join(self._metadata.stan_vars.keys())
            )

    def stan_variables(self) -> Dict[str, np.ndarray]:
        """
        Return a dictionary mapping Stan program variables names
        to the corresponding numpy.ndarray containing the inferred values.

        See Also
        --------
        CmdStanMCMC.stan_variable
        CmdStanMLE.stan_variables
        CmdStanPathfinder.stan_variables
        CmdStanVB.stan_variables
        CmdStanGQ.stan_variables
        CmdStanLaplace.stan_variables
        """
        result = {}
        for name in self._metadata.stan_vars:
            result[name] = self.stan_variable(name)
        return result

    def method_variables(self) -> Dict[str, np.ndarray]:
        """
        Returns a dictionary of all sampler variables, i.e., all
        output column names ending in `__`.  Assumes that all variables
        are scalar variables where column name is variable name.
        Maps each column name to a numpy.ndarray (draws x chains x 1)
        containing per-draw diagnostic values.
        """
        self._assemble_draws()
        return {
            name: var.extract_reshape(self._draws)
            for name, var in self._metadata.method_vars.items()
        }

    def save_csvfiles(self, dir: Optional[str] = None) -> None:
        """
        Move output CSV files to specified directory.  If files were
        written to the temporary session directory, clean filename.
        E.g., save 'bernoulli-201912081451-1-5nm6as7u.csv' as
        'bernoulli-201912081451-1.csv'.

        :param dir: directory path

        See Also
        --------
        stanfit.RunSet.save_csvfiles
        cmdstanpy.from_csv
        """
        self.runset.save_csvfiles(dir)
